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CONS P EC TU S

S ince the September 11, 2001, terrorist attacks in the United States, the
specter of a chemical threat against civilian populations has renewed

research interest in chemical warfare agents, their mechanisms of action, and
treatments that reverse their effects. In this Account, we focus specifically on
organophosphorus nerve agents (OPNAs). Although some OPNAs are used as
pest control, the most toxic chemicals in this class are used as chemical
warfare agents in armed conflicts. The acute toxicity of OPNAs results from the
irreversible inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) via the
formation of a covalent P�O bond at the serine hydroxyl group in the
enzyme active site. AChE breaks down the neurotransmitter acetylcholine at
neuronal synapses and neuromuscular junctions. The irreversible inhibition of
AChE causes the neurotransmitter to accumulate in the synaptic cleft, leading
to overstimulation of cholinergic receptors, seizures, respiratory arrest, and
death.

The current treatment for OPNA poisoning combines an antimuscarinic
drug (e.g., atropine), an anticonvulsant drug (e.g., diazepam), and an AChE
reactivator of the pyridinium aldoxime family (pralidoxime, trimedoxime, obidoxime, HI-6, HL€o-7). Because of their high
nucleophilicity, oximes can displace the phosphyl group from the catalytic serine, thus restoring the enzyme's catalytic activity.
During 50 years of research in the reactivator field, researchers have synthesized and tested numerous structural modifications of
monopyridinium oximes and bispyridinium oximes. In the past decade, medicinal chemists have focused their research on the
more efficient bispyridinium reactivators, but all known reactivators have several drawbacks. First, due to their permanent positive
charge, they do not cross the blood�brain barrier (BBB) efficiently and do not readily reactivate AChE in the central nervous
system. Second, no single oxime is efficient against a wide variety of OPNAs. Third, oximes cannot reactivate “aged” AChE.

This Account summarizes recent strategies for the development of AChE reactivators capable of crossing the BBB. The use of
nanoparticulate transport and inhibition of P-glycoprotein efflux pumps improves BBB transport of these AChE reactivators.
Chemical modifications that increased the lipophilicity of the pyridinium aldoximes, the addition of a fluorine atom and the
replacement of a pyridyl ring with a dihydropyridyl moiety, enhances BBB permeability. The glycosylation of pyridine aldoximes
facilitates increased BBB penetration via the GLUT-1 transport system. The development of novel uncharged reactivators that can
move efficiently across the BBB represents one of the most promising of these new strategies.
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Introduction
Poisoning by organophosphorus-based pesticides is a seri-

ous public health issue with over 200000 fatalities annually

worldwide.1 Organophosphorus warfare agents present a

persistent threat to the general population as a consequence

of armed conflicts (e.g., Gulf War) and terrorist attacks (e.g.,

subway attacks in Japan in 1995). These compounds irre-

versibly inhibit acetylcholinesterase (AChE, EC 3.1.1.7),

which plays an essential role in neurotransmission. Over

the last 60 years, pyridinium oxime compounds have been

widely used as antidotes to treat these intoxications.2,3

Despite decades of research in this field, there is no efficient

and general reactivator for organophosphorus-inhibited

AChE. Interest in this field has increased since the September

2001 terrorist attacks in the U.S.A. The purpose of this

Account is to highlight the important and recent advances

in research on organophosphorus-inhibited AChE.

Wewill focusmost of the discussionon the reactivationof

human AChE (hAChE) inhibited by the highly toxic organo-

phosphorus chemical warfare agents. Details on the reacti-

vation of AChE after organophosphorus pesticide poisoning

have been recently reviewed extensively.4 In the first sec-

tion, the organophosphorus nerve agents will be discussed,

as well as the mechanism responsible for AChE irreversible

inhibition and the effects caused by this inhibition. In the

next section, the main pyridinium oxime reactivators and

their mechanism of reactivation will be discussed. Then, the

structural modifications of pyridinium and bis-pyridinium

oximes, developed in the past decade, will be summarized.

Finally, new concepts focused on AChE reactivation in the

brain will be discussed.

Inhibition of AChE by Organophosphorus
Nerve Agents
The first generation of organophosphorus (OP) nerve

agents, called G-agents (German agents), share a common

OdPV(O�R) moiety. They include the cyanophosphorami-

date, tabun (GA), and the methylfluorophosphonates, sarin

(GB), soman (GD), and cyclosarin (GF) (Figure 1). After WWII,

methylphosphothioates called V-agents (venomous agents)

were invented: VX (Great Britain), RVX (Russian isomer),

and CVX (Chinese isomer) (Figure 1). V-agents differ from

G-agents by their lower volatility, their higher persistency in

the environment, and their higher toxicity.5

The acute toxicity of OPs is due to their rapid inhibition of

AChE. This enzyme is a serine hydrolase and is responsible

for the breakdown of the neurotransmitter acetylcholine at

neuronal synapses and neuromuscular junctions.6 The in-

hibition of AChE leads to an accumulation of acetylcholine,

resulting in permanent saturation of muscarinic and nicoti-

nic receptors and ultimately a system-wide cholinergic crisis.

Among the many symptoms that appear upon hyperstimu-

lation of the cholinergic system are paralysis, seizures, and

respiratory failure causing death.

During normal function of AChE, a serine�histidine�
glutamate triad, located in the active site of the enzyme,

catalyzes the hydrolysis of acetylcholine (Figure 2A). The cata-

lyticmechanismconsists of two steps: (1) thenucleophilic serine

attacks acetylcholine to form a tetrahedral transition state that

collapses to the acetyl-enzyme with release of choline; (2) a

water molecule, activated by the nearby histidine, attacks the

acetylserine leading to the formation of a second tetrahedral

transition state that collapses to the freeenzymeandacetic acid.

This mechanism is extremely efficient; AChE hydrolyzes more

than 104 molecules of acetylcholine per second.7

Themechanismof AChE inhibition byOPs is similar to the

initial step of hydrolysis. Once the OP has reached the

bottom of the active site gorge, the nucleophilic serine

attacks the phosphorus atom, forming a bipyramidal transi-

tion state, which is followed by the departure of the leaving

group and the formation of the phosphylserine (Figure 2B).

The phosphyl adduct is a remarkablemimic of the transition

state of the initial step of hydrolysis. However, in the second

step, the catalytic histidine cannot fulfill the role of water

activation because it is either forced into a nonproductive

conformation (e.g., VX8 and tabun conjugates9) or shielded

from water (e.g., soman conjugate10). Therefore the sponta-

neous hydrolysis of the phosphylenzyme is extremely slow,

varying from hours for dimethylphosphoryl conjugates11 to

days for V-agent AChE conjugates.12

Spontaneous hydrolysis of the conjugate is in competi-

tion with a time-dependent intramolecular reaction yielding

FIGURE 1. Chemical structures of the main organophosphorus nerve
agents.
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an “aged” form of the conjugate.13 The aging reaction of

AChE conjugates is generally a dealkylation of the alkoxy

substituent present on the phosphorus atom, and it yields a

phosphonate adduct (Figure 2B). The aging half-time are

2�4min for soman, 5 h for sarin, 46 h for tabun, and 48 h for

VX.14 The resulting phosphonic oxyanion forms a salt bridge

with the protonated triad histidine15 that strongly stabilizes

the conjugate.9 Moreover, the phosphonic oxyanion pre-

vents anynegatively chargednucleophile fromapproaching

the phosphorus atom. Consequently, aged phosphyl-AChE

conjugates do not get hydrolyzed.

Known Antidotes against OP Poisoning
In the 1950s, Wilson showed that hydroxylamine16 and

nicotinhydroxamic acid17 were able to reactivate diethyl-

phosphoryl AChE. These initial findings quickly led to the

discovery that oximes,18 2-oxoaldoximes,19 and especially

2-pyridinium aldoxime (2-PAM; Figure 3)20 were powerful

reactivators.

The efficiency of reactivators can be estimated by the

second-order rate constant for reactivation, kr2, which is the

ratio of the reactivation rate constant (kr) and the approx-

imate dissociation constant of the reactivator/phosphyl-

AChE complex (KD) (Figure 2B).15 The good activity of

2-PAM was attributed to strong binding of the positively

charged pyridinium to the enzyme active site and proper

orientation of the oxime group for displacement of the

phosphyl moiety. The corresponding oxime, 4-PAM, was

less efficient than 2-PAM because its orientation was im-

proper. It was hypothesized that combining 4-PAM with a

ligand that is able to strongly bind to the enzyme could yield

a compoundwith both better affinity and proper orientation

FIGURE 2. (A) Mechanism of acetylcholine hydrolysis by AChE. (B) Mechanism of AChE inhibition by organophosphorus nerve agents, aging, and
reactivation by oximes.
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of the oxime group in the AChE catalytic site. Following this

reasoning, the first bispyridium aldoxime, TMB-4 (Figure 3),

was prepared. TMB-4 proved to be superior to both 2-PAM

and 4-PAM due to an improved affinity.21 Subsequently,

other aldoximes were synthesized based on the TMB-4

structure: L€uH-6,22 HI-6,23 and HL€o-724 (Figure 3). Though

the bispyridinium aldoximes are effective reactivators, none

is a universal reactivator. Their efficiency of reactivation

varies greatly with the nature of the phosphyl group on

the inhibited AChE.15 L€uH-6 is generally considered as the

best reactivator for pesticides (dialkylphosphoryl-AChE).25

HI-6 is active against soman and VX15 but is inefficient

against tabun.26 4-Substituted oximes like TMB-4, HL€o-7,

and L€uH-6 are efficient against tabun inhibition,27 but their

reactivation rates are very slow compared with those ob-

tained for VX-inhibited AChE.15 This poor reactivity is related

to the weak electrophilicity and steric hindrance of the

phosphoramidyl-AChE adduct created by tabun.27

What is worse, all aged conjugates are completely refrac-

tory toward oxime reactivation. The only viable strategy for

reactivation of aged adducts seems to bemodification of the

phosphonic moiety by realkylation in situ, using powerful

and specific alkylating agents.13

The pKa of oximes is also of pivotal importance since the

reactive species is the oximate. To be effective, the oxime

must remain partially deprotonated in the range of physio-

logical pH; full deprotonation is unwanted because the

reactivity is compromised by the cost in the desolvation

energy for formation of the oximate anion.28 The conju-

gated ring systems of 2- and 4-alkylpyridinium aldoximes

(e.g., 2-PAM,HI-6, andobidoxime) increase the acidity of these

oximes yielding pKa values ranging between 7.3 and 8.0.28

The recent X-ray structures of HL€o-7 and HI-6 complexed

with phosphoramidyl-AChE illustrate the prototypic binding

of a bisquaternary oxime to tabun-inhibited enzyme. Associa-

tion is predominantly via π�π and cation�π interactions.29,30

One pyridinium moiety is stacked between the aromatic

residues of the peripheral site at the entrance of the active site

gorge, and the second pyridinium interacts with tyrosines in

the middle of the active site gorge (Figure 4). The phosphor-

us�oximate distance is 5.6 Å for HL€o-7 and 9.7 Å for HI-6. The

oxime functions are neither in a proper orientation nor at a

proper distance to attack the phosphorus atom. These obser-

vations suggest that the structure of oxime reactivators could

be substantially improved. One such improvement might

involve coupling a peripheral site ligand to a nucleophilic

function.31 A major difficulty in designing new reactivators is

that the details of the reactivationmechanism are not yet well

understood. Some structuralwork suggests that deprotonation

of the oxime is assisted by the catalytic histidine32 or by a

FIGURE 3. Chemical structures of the main pyridinium aldoxime
reactivators.

FIGURE 4. Active site view of HL€o-7�tabun�mouse AChE (carbon
atoms in magenta) and HI-6�fenamiphos�mouse AChE (carbon atoms
in green). Ser203 and His447 are components of the catalytic triad.
Tyr124 and Trp286 are components of the peripheral site at the
entrance of the active site gorge.
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bridging water molecule.33 It has also been suggested that the

nucleophile does not have to attack the face of the phosphyl

group opposite to the serine (apical position), but it could also

attack the vicinal face if it is open.34 The wealth of new

structural information on complexes of inhibited-AChE and

oximes must be considered when designing new generations

of reactivators.

Structural Modifications of Monoquaternary
and Bisquaternary Pyridinium AChE
Reactivators
Monoquaternary pyridinium reactivators are known to be

weak AChE reactivators compared with the bisquaternary

reactivators. Still, analogues of monoquaternary pralidox-

ime (PAM) have been synthesized in an effort to improve

their reactivity. Their reactivation abilities were evaluated

in vitro on organophosphorus inactivated human AChE

(hAChE) (Figure 5).35 These studies have shown that elonga-

tion of the side chain (to improve lipophilicity) or the pre-

sence of an aromatic group in the side chain (to increase

interactionswith AChE residues viaπ�π interactions) did not

improve their reactivation ability comparedwith 2-PAM (the

relative reactivation activity to 2-PAM is 46% and 44% for

1a and 1b, respectively). These lipophilic derivates 1a and

1b were shown to penetrate the blood�brain barrier (BBB)

with a penetration ratio of 30% and 3%, respectively.36

However, the usefulness of these compounds is limited

due to their significant toxicity. Monopyridinium oximes

were studied less frequently following the realization that

bispyridinium oximes were better reactivators.

To date, the principal modifications carried out on bispyr-

idinium structures have included modifying the position of

the oximeon the pyridinium ring, the introduction of various

substituents, and especially alterations to the nature and the

length of the linker between the pyridinium rings.

To test the effect of the linker chain length on the reactiva-

tion of tabun-inhibited AChE, analogues of trimedoxime

(TMB-4) were synthesized. It was determined that the optimal

distance between two 4-pyridinium aldoximes was three or

four carbons (Figure 6A).37 Mono-oxime bispyridinium analo-

gues of TMB-4 were also evaluated as potential hAChE

reactivators. The nonoxime pyridinium ring was substituted

in position 4 with various groups (Figure 6B) or was replaced

with a heteroaromatic ring (Figure 6C). Some of these analo-

gues (R = COMe, Ph, or C(NH2)dNOH, refer to Figure 6B) had a

slightly lower reactivation potency for tabun-inhibited hAChE

than trimedoxime.38 Of all the synthesized and evaluated

analogues, only compound 3 (Figure 6)39 was more efficient

than trimedoxime at reactivating tabun-inhibited hAChE

in vitro (5-fold more efficient).40 Interestingly, the presence

of a carbamoyl group influences the reactivation ability of the

analogue by increasing its affinity for the organophosphorus-

inhibited enzyme. Affinity is improved via hydrogen bond

interactionswith residues at the peripheral site of the enzyme.

For example, compound 3 is 6-fold more efficient than

compound 2 (Figure 6A) due to its increased affinity.

Modifications to the HI-6 and obidoxime structures have

also been evaluated. The research teams of K. Ku�ca and J.

Acharya have independently studied the effects on reactiva-

tion of introducing additional heteroatoms into the linker. It

was hypothesized that a pair of oxygen atoms in the linker

FIGURE 5. PAM analogues.

FIGURE 6. Analogues of trimedoxime (TMB-4) evaluated in the reacti-
vation of tabun-inhibited hAChE.
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could interact better with residues in the AChE catalytic site

through hydrogen bonds and thus increase reactivator's

affinity toward the phosphylated enzyme.41,42 Biological

evaluation of 4 and 5 (Figure 7)43 showed that the latter is

2-fold more efficient than trimedoxime for the reactivation

of tabun-inhibited hAChE. On the other hand, Acharya et al.

have prepared and evaluated symmetrical bispyridinium

aldoximes with longer linkers bearing two oxygen atoms.44

Among these compounds, 6 (Figure 7) showed a slightly

better ability to reactivate sarin-inhibited hAChE than 2-PAM.

The inclusion of an unsaturated chain to connect the two

pyridinium rings has also been evaluated. In comparison

with its saturated analogue, 7 (Figure 8) is 2.5-fold more

efficient at reactivating tabun-inhibited AChE due to a better

affinity and reactivity, and it is 2-fold more efficient than

trimedoxime.40 Interestingly, the substitution of one of the

oxime functions by a carbamoyl group dramatically in-

creased the reactivation potency of 8 (5-fold more efficient

than 7).45 Molecular docking studies have shown that the

improved reactivity of 8 (compared with 3) could be due to

supplementary interactions of 8 with AChE, specifically

edge-to-face interactions between the double bond and

AChE aromatic residues.46

With the intention of increasing the reactivator's affinity

toward the inhibited enzyme through cation�π or π�π

interactions, bispyridinium compounds with xylene con-

necting linkers were synthesized and evaluated. Com-

pounds 9 and 10 (Figure 9) were 6-fold less efficient than

trimedoxime at reactivating tabun-inhibited AChE.46 How-

ever, 10 reactivated 45% of sarin-inhibited hAChE in com-

parison to, respectively, 34% and 24% reactivation by

2-PAM and obidoxime at the concentration 10�3 M.47 A

total of 26 xylene-modified, monooxime-monocarbamoyl

bispyridinium compounds were tested, and only structure

11 (Figure 9) displayed substantial reactivation potency, but

it was 1.6-fold less efficient than trimedoxime at reactivating

tabun-inhibited AChE. Moreover, it was 1.5-fold more toxic

than trimedoxime.46

Strategies for Blood�Brain Barrier
Penetration
Theblood�brain barrier (BBB) is composedof anendothelial

cell layer, which separates the circulating blood and the

brain's extracellular fluid. Tight junctions (TJ) between en-

dothelial cells and limited pinocytic activity48 make the BBB

nearly impenetrable to viruses, bacteria, proteins, and polar

molecules.49 OP nerve agents, being small lipophilic mole-

cules, can easily penetrate the BBB by free diffusion and

thereby inhibit AChE in the central nervous system (CNS).

However, commonly used reactivators are permanently

charged cationic compounds that have difficulty in crossing

the BBB.50 For instance, the BBB penetration of 2-PAM

(striatal extracellular/blood concentration ratio) has been

estimated to be only approximately 10% by in vivo rat brain

microdialysis technique with HPLC/UV.51 Therefore, oximes

reactivate AChE in peripheral sites, but they are not effective

in the CNS. Consequently they provide little to no protection

against the neurological effects of OP exposure, which

FIGURE 7. Structures of reactivators bearing one or two oxygen atoms in the linker between the two pyridinium rings.

FIGURE8. Reactivators bearing (E)- or (Z)-but-2-ene linkers between the
two pyridinium rings.

FIGURE 9. Reactivators bearing xylene-connecting linkers between
the two pyridinium rings.
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includes seizures, convulsions, and behavioral and psycho-

logical changes. This dilemma prompted the development

of oxime-based agents that can cross the BBB and reverse

the effects of OP on AChE in the CNS.

A number of strategies have been developed to circum-

vent or disrupt the BBB. Direct injections into the brain,52

local exposure to high-intensity focused ultrasound (HIFU),53

and osmotic TJ opening (by hypertonic mannitol)54 repre-

sent the most painful and invasive BBB disruption methods.

Significant progress in BBB penetration has been achieved

by using targeted nanoparticulate drug delivery. Obidoxime

dichloride and both HI-6 dichloride monohydrate and HI-6

dimethanesulfonate bound to biodegradable human serum

albumin (HSA) nanoparticles were able cross an in vitro BBB

model.55 In general, the oximes transported in nanoparticles

exhibited a better reactivation of paraoxon-ethyl and sarin-

inhibited AChE than free oximes, resulting from higher BBB

crossing. For example, the concentration of HI-6 dimetha-

nesulfonate loaded on NP-ApoE nanoparticles, measured

across the BBB, was 44.6 μM compared with 15.2 μM for the

free oxime (transport difference þ193.16%).

Safe and effectivemodulation of transport across the BBB

also represents an attractive approach for targeting drugs

into the brain. Inhibition of the active efflux transporter

P-glycoprotein (Pgp) located in the endothelial cell mem-

branes was shown to improve the BBB permeability of HI-

6.56 Administration of tariquidar, a specific noncompetitive

Pgp pump inhibitor, resulted in a 2-fold increase in HI-6

levels in the brain and, subsequently, twice as much AChE

activity after 1 h of treatment, while HI-6 concentration in

the blood was not affected. More recently, adenosine re-

ceptor (AR) signaling was shown to modulate BBB perme-

ability in vivo, facilitating the entry of dextrans and

antibodies to β-amyloid into the brain.57 AR signaling may

be a promising strategy for improvement in the BBB perme-

ability of therapeutically important oximes.

Introduction of a fluorine atom into the heterocyclic ring

of pyridinium oximes should enhance their lipophilicity.

Increased lipophilicity would enable the oxime to more

readily diffuse across the BBB increasing its AChE reactiva-

tion potency. According to computer-aided calculations,

fluorinated 4-PAM analogues 12 and 13 (Figure 10) are

more lipophilic than nonfluorinated 4-PAM. These predic-

tions were confirmed by AChE reactivation experiments58

and by assessment of BBB permeability using the parallel

artificial membrane permeation assays (PAMPA) method.59

In the PAMPA experiment, the fluorinated N-methyl-4-

pyridinium oxime 12 exhibited higher permeability than

4-PAM (log Pe = �7.2 and �6.4 for 4-PAM and 12, respec-

tively, where Pe is effective permeability). In the AChE

reactivation experiments, compound 12 showed a reactiva-

tion potency toward the paraoxon-inhibited housefly AChE

and bovine RBC (red blood cell) AChE that was 2.5-fold and

2.2-fold higher than 4-PAM, respectively.

Fluorinated oximes 14 and 15 both exhibited higher

reactivation potencies toward paraoxon-inhibited housefly

AChE than obidoxime andHI-6. However, toward paraoxon-

inhibited bovine RBC AChE, obidoxime and HI-6 were more

active than their fluorinated analogs 14 and 15.58 Mem-

brane permeability measurements showed that the BBB

permeability increased in proportion to the number of

fluorine atoms. However, for the bis-pyridinealdoximes

16a�c and 17a,b (Figure 11) the permeability data did not

correlate with the in vitro reactivation results.59

The modification of pyridine aldoxime with a glucose

moiety was proposed to facilitate its BBB penetration. This

was confirmed by Heldman et al. These sugar�oxime con-

jugates are thought to penetrate the BBB due to recognition of

the glucose moiety by the facilitative glucose transporters.60

Themost active sugar�oxime, compound18 (Figure12), hada

reactivation potency toward diisopropyl phosphorofluoridate

(DFP)- andparaoxon-inhibitedhAChE thatwas similar to thatof

2-PAM.61 Moreover, the sugar-derivative 19 showed lower

toxicity than 4-PAM.

FIGURE 10. Fluorinated mono- and bisquaternary pyridinium
aldoximes.

FIGURE 11. Fluorinated analogues of 7 and 8.
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Yet another approach is based on the use of a prodrug of

2-PAM, in which the highly charged pyridine ring is replaced

with a significantly less charged dihydropyridyl moiety.62,63

Once it has penetrated the BBB, pro-PAM 20 (Figure 13)

rapidly undergoes oxidation in the brain to produce a

functionally active quaternary oxime2-PAM,which can then

reactivate OP-inhibited AChE in the CNS. Disadvantages of

this approach include the difficult synthesis of pro-PAM and

its rather low stability due to autoxidation.

Anovel strategyused to improve theBBBpermeability is the

synthesis of uncharged reactivators, which are capable of

diffusing across the BBB and reactivating AChEs within the

CNS. The neutral oximes monoisonitrosoacetone 21 (MINA)

and diacetylmonooxime 22 (DAM) bearing the ketoaldoxime

or ketoxime moiety as a reactivator function (Figure 14) are

reported to cross the BBB, but their in vitro reactivation potency

toward OP-inhibited AChE is much lower than that of 2-PAM

and other quaternary oximes.64,65

M. de Koning et al. proposed linking the reactivating

R-ketoaldoxime moiety to a piperidine-derived peripheral

site ligand (PSL) in order to increase the affinity for AChE

(Figure 14).66 The hybrids 24a�c displayed a remarkable

increase in reactivation potency (about 25�36% reactivation

of sarin-inhibited hAChE) compared with the reference com-

pound 23 (5% reactivation of sarin-inhibited hAChE), but they

still remained inefficient reactivators compared with the com-

monly used pyridinium oximes. Replacing the ketone moiety

with an amide one resulted in compound25 (Figure 15), which

showed reactivation kinetics superior to the reference un-

charged compounds 21 and 22, but in comparison with

2-PAM, this analogue still requires the further refinement.67

Nonquaternarypyridinealdoxime, compound26 (Figure16),

exhibitedahighpotency for reactivationofVX-inhibitedhAChE,

but a lowaffinity toward inhibited enzyme.68 Linking this oxime

to phenyl-tetrahydroisoquinoline (a peripheral site ligand)

to create compounds 27a,b enhanced the affinity toward

the enzyme, and increased reactivation of VX and tabun-

inhibited hAChE. Rates of reactivation equaled and even ex-

ceeded those of HI-6, obidoxime, and HL€o-7.69 For example,

27b is as efficient at reactivating VX�hAChE as HL€o-7, which

is currently the best bispyridinium oxime reactivator for VX�
hAChE. Compound27b is also 5-foldmore efficient at reactivat-

ing tabun-inhibited AChE than trimedoxime, which is currently

the best bispyridinium oxime reactivator for tabun�hAChE.

Reactivation of inhibited AChE with pyridinium aldox-

imes (especially 4-pyridinium aldoximes) results inevitably

in the formation of highly reactive phosphyloximes, which

FIGURE 12. Sugar�Oximes.

FIGURE 13. In vivo oxidation of pro-PAM.

FIGURE 14. Neutral reactivators: R-ketoaldoximes and ketoxime.

FIGURE 15. Uncharged hydroxyiminoacetamide 25.

FIGURE 16. Phenyl-tetrahydroisoquinoline�pyridinaldoxime
conjugates.

FIGURE 17. Amidine-oxime reactivators.
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in turn may inhibit AChE (recapture phenomenon).70 This

complication could be limited with oximes 27 due to the

presence of the phenol moiety, which takes part in the

formation of an isoxazole by a subsequent intramolecular

and irreversible reaction.71

Amidine�oxime reactivators 28a�e (Figure 17) are ex-

pected to possess increased lipophilicity.72 Although these

compounds were found to be less potent than 2-PAM in

reactivation of AChE in vitro, they have the advantage of

being more lipophilic than 2-PAM and were expected to be

found at much higher concentrations in the brain. Two

amidine-oximes, 28c and 28d, were efficacious in vivo and

protected animals from CNS toxicity of nerve agent model

compounds.

Conclusion and Outlook
During the three decades since the discovery of monopyr-

idinium and bispyridinium oximes as reactivators for OP-

inhibited AChE, hundreds of variations have been synthe-

sized and evaluated. All of those reactivators have three

major drawbacks: (1) Their permanent positive charge pre-

vents them from crossing the BBB to reactivate brain AChE.

(2) They exhibit unequal reactivation abilities against AChE

inhibited with different types of OP. (3) they are inefficient at

reactivating “aged” AChE. Recent research has developed

new and efficient uncharged reactivators that are able to

cross the BBB. However, further research is necessary to

discover a broad-spectrum reactivator suitable for thewhole

range of OPs. None of existing pyridinium oximes is a true

broad-spectrum reactivator.73 In the short term, a solution to

the broad-spectrum reactivator issue would be to combine

two or more oximes that have complementary activities. In

this regard, combining obidoxime with HI-6 is a promising

approach.74 Regarding “aged” AChE, further research is

necessary, since no existing reactivator is able to reactivate

it. Further developments in this field will lead to better

protection for the public from OPs used in both pest control

and warfare.

The authors gratefully acknowledge LawrenceM. Schopfer for the
critical reading of the manuscript.
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